Aider 應用場景與 Airflow TaskFlow API 筆記
December 17, 2024
沒什麼組織、一些倏忽即逝有趣或不有趣的想法
Aider use case sharing
- Use the doc from Aider to build slides from Aider
- e.g. generate a slides elaborate on what is aider, its main features, saperate and illustrate the commands we could use in different usage group in marp
- Aider in IDE
// XXX AI!
,// XXX AI?
- Commit/ Shell Integration
- It event can change color theme
- Use Aider to understand Airflow’s codebase
/architect what is the main components of airflow, show the class diagram in mermaidjs with their responsibility and interaction relationship
/architect show the sequence diagram of how OpenAITriggerBatchOperator works in mermaidjs
/architect show the sequence diagram of how deferrable operator works in mermaidjs
- Use Aider to add unit tests
- e.g. generate unit tests for the functionality of XXX with the coding style of YYY
- Use Aider to consolidate the ideas, let Aider be your real second brain to help you think, recall and organize your thoughts
- e.g. generate the slides for the design of
pollm
according to the concepts about why we need llm translation, Aider, and thepollm
design (with added all the random-thoughts notes)
- e.g. generate the slides for the design of
- Use Aider to do inline translation for po files
# 將這句翻譯成中文 AI!
- Use the doc from Aider to build slides from Aider
How TaskFlow API works in Airflow
Overview provided by Aider:
Decorator Creation Phase
@task def my_function(): pass
TaskDecoratorCollection.__call__
routes topython_task
task_decorator_factory
creates a_TaskDecorator
instance- Wraps the original function with task configuration
Task Definition Phase
result = my_function()
- Creates
_PythonDecoratedOperator
instance - Sets up task parameters and configuration
- Returns
XComArg
for dependency management
- Execution Phase
# When DAG runs ti = TaskInstance(task) ti.execute(context)
Executes the wrapped Python function
Handles result pushing to XCom
Manages task state and dependencies
Key Components:
TaskDecoratorCollection
: Entry point for@task
decorator_TaskDecorator
: Handles task creation and configuration_PythonDecoratedOperator
: Executes the actual Python functionXComArg
: Manages task dependencies and resultsThe architecture allows for:
Clean separation between definition and execution
Flexible task configuration
Integration with Airflow’s DAG system
XCom-based data passing
Task mapping and dynamic task generation
Class Diagram:
classDiagram class TaskDecoratorCollection { +python: staticmethod +__call__: Any +__getattr__(name): TaskDecorator } class TaskDecorator { <<interface>> +__call__(python_callable): Task +__call__(**kwargs): Callable } class _TaskDecorator { +function: Callable +operator_class: type[BaseOperator] +multiple_outputs: bool +kwargs: dict +__call__(*args, **kwargs): XComArg +expand(**kwargs): XComArg +expand_kwargs(kwargs): XComArg +partial(**kwargs): _TaskDecorator +override(**kwargs): _TaskDecorator } class BaseOperator { +task_id: str +dag: DAG +execute(context): Any } class DecoratedOperator { +python_callable: Callable +op_kwargs: dict +op_args: list +execute(context): Any +_handle_output(return_value, context) } class PythonOperator { +execute(context): Any } class _PythonDecoratedOperator { +template_fields: Sequence[str] +custom_operator_name: str +__init__(python_callable, op_args, op_kwargs, **kwargs) } class XComArg { +operator: BaseOperator +key: str } TaskDecoratorCollection ..> TaskDecorator TaskDecorator ..> _TaskDecorator BaseOperator <|-- DecoratedOperator BaseOperator <|-- PythonOperator DecoratedOperator <|-- _PythonDecoratedOperator PythonOperator <|-- _PythonDecoratedOperator _TaskDecorator ..> _PythonDecoratedOperator _PythonDecoratedOperator ..> XComArg
Sequence Diagram:
sequenceDiagram participant User participant task as @task participant TaskDecFactory as task_decorator_factory participant TaskDecorator as _TaskDecorator participant PythonOp as _PythonDecoratedOperator participant XCom Note over User: Definition Time User->>task: @task(task_id="my_task") activate task task->>TaskDecFactory: task_decorator_factory(python_callable=None, **kwargs) TaskDecFactory->>TaskDecorator: create _TaskDecorator(multiple_outputs, operator_class, kwargs) TaskDecorator-->>User: return decorator deactivate task Note over User: Function Definition User->>TaskDecorator: decorator(python_function) activate TaskDecorator TaskDecorator-->>User: return _TaskDecorator instance deactivate TaskDecorator Note over User: Execution Time User->>TaskDecorator: decorated_function(*args, **kwargs) activate TaskDecorator TaskDecorator->>PythonOp: create operator(python_callable, op_args, op_kwargs) PythonOp->>PythonOp: prepare_for_execution() PythonOp->>XCom: create XComArg(operator) XCom-->>TaskDecorator: return XComArg TaskDecorator-->>User: return XComArg deactivate TaskDecorator Note over User: DAG Runtime User->>PythonOp: execute(context) activate PythonOp PythonOp->>PythonOp: _execute_task_with_callbacks(context) PythonOp->>PythonOp: python_callable(*op_args, **op_kwargs) PythonOp->>XCom: xcom_push(result) PythonOp-->>User: return result deactivate PythonOp