Josix is Only Joking

Aider 應用場景與 Airflow TaskFlow API 筆記

December 17, 2024

沒什麼組織、一些倏忽即逝有趣或不有趣的想法

  • Aider use case sharing

    • Use the doc from Aider to build slides from Aider
      • e.g. generate a slides elaborate on what is aider, its main features, saperate and illustrate the commands we could use in different usage group in marp
      • Aider in IDE
        • // XXX AI!, // XXX AI?
      • Commit/ Shell Integration
      • It event can change color theme
    • Use Aider to understand Airflow’s codebase
      • /architect what is the main components of airflow, show the class diagram in mermaidjs with their responsibility and interaction relationship
      • /architect show the sequence diagram of how OpenAITriggerBatchOperator works in mermaidjs
      • /architect show the sequence diagram of how deferrable operator works in mermaidjs
    • Use Aider to add unit tests
      • e.g. generate unit tests for the functionality of XXX with the coding style of YYY
    • Use Aider to consolidate the ideas, let Aider be your real second brain to help you think, recall and organize your thoughts
      • e.g. generate the slides for the design of pollm according to the concepts about why we need llm translation, Aider, and the pollm design (with added all the random-thoughts notes)
    • Use Aider to do inline translation for po files
      • # 將這句翻譯成中文 AI!
  • How TaskFlow API works in Airflow

    • Overview provided by Aider:

      1. Decorator Creation Phase

        @task
        def my_function():
            pass
      • TaskDecoratorCollection.__call__ routes to python_task
      • task_decorator_factory creates a _TaskDecorator instance
      • Wraps the original function with task configuration
      1. Task Definition Phase

        result = my_function()
      • Creates _PythonDecoratedOperator instance
      • Sets up task parameters and configuration
      • Returns XComArg for dependency management
      1. Execution Phase
        # When DAG runs
        ti = TaskInstance(task)
        ti.execute(context)
      • Executes the wrapped Python function

      • Handles result pushing to XCom

      • Manages task state and dependencies

        Key Components:

      • TaskDecoratorCollection: Entry point for @task decorator

      • _TaskDecorator: Handles task creation and configuration

      • _PythonDecoratedOperator: Executes the actual Python function

      • XComArg: Manages task dependencies and results

        The architecture allows for:

      • Clean separation between definition and execution

      • Flexible task configuration

      • Integration with Airflow’s DAG system

      • XCom-based data passing

      • Task mapping and dynamic task generation

      Class Diagram:

      classDiagram
          class TaskDecoratorCollection {
              +python: staticmethod
              +__call__: Any
              +__getattr__(name): TaskDecorator
          }
      
          class TaskDecorator {
              <<interface>>
              +__call__(python_callable): Task
              +__call__(**kwargs): Callable
          }
      
          class _TaskDecorator {
              +function: Callable
              +operator_class: type[BaseOperator]
              +multiple_outputs: bool
              +kwargs: dict
              +__call__(*args, **kwargs): XComArg
              +expand(**kwargs): XComArg
              +expand_kwargs(kwargs): XComArg
              +partial(**kwargs): _TaskDecorator
              +override(**kwargs): _TaskDecorator
          }
      
          class BaseOperator {
              +task_id: str
              +dag: DAG
              +execute(context): Any
          }
      
          class DecoratedOperator {
              +python_callable: Callable
              +op_kwargs: dict
              +op_args: list
              +execute(context): Any
              +_handle_output(return_value, context)
          }
      
          class PythonOperator {
              +execute(context): Any
          }
      
          class _PythonDecoratedOperator {
              +template_fields: Sequence[str]
              +custom_operator_name: str
              +__init__(python_callable, op_args, op_kwargs, **kwargs)
          }
      
          class XComArg {
              +operator: BaseOperator
              +key: str
          }
      
          TaskDecoratorCollection ..> TaskDecorator
          TaskDecorator ..> _TaskDecorator
          BaseOperator <|-- DecoratedOperator
          BaseOperator <|-- PythonOperator
          DecoratedOperator <|-- _PythonDecoratedOperator
          PythonOperator <|-- _PythonDecoratedOperator
          _TaskDecorator ..> _PythonDecoratedOperator
          _PythonDecoratedOperator ..> XComArg

      Sequence Diagram:

      sequenceDiagram
          participant User
          participant task as @task
          participant TaskDecFactory as task_decorator_factory
          participant TaskDecorator as _TaskDecorator
          participant PythonOp as _PythonDecoratedOperator
          participant XCom
          
          Note over User: Definition Time
          User->>task: @task(task_id="my_task")
          activate task
          task->>TaskDecFactory: task_decorator_factory(python_callable=None, **kwargs)
          TaskDecFactory->>TaskDecorator: create _TaskDecorator(multiple_outputs, operator_class, kwargs)
          TaskDecorator-->>User: return decorator
          deactivate task
          
          Note over User: Function Definition
          User->>TaskDecorator: decorator(python_function)
          activate TaskDecorator
          TaskDecorator-->>User: return _TaskDecorator instance
          deactivate TaskDecorator
          
          Note over User: Execution Time
          User->>TaskDecorator: decorated_function(*args, **kwargs)
          activate TaskDecorator
          TaskDecorator->>PythonOp: create operator(python_callable, op_args, op_kwargs)
          PythonOp->>PythonOp: prepare_for_execution()
          PythonOp->>XCom: create XComArg(operator)
          XCom-->>TaskDecorator: return XComArg
          TaskDecorator-->>User: return XComArg
          deactivate TaskDecorator
          
          Note over User: DAG Runtime
          User->>PythonOp: execute(context)
          activate PythonOp
          PythonOp->>PythonOp: _execute_task_with_callbacks(context)
          PythonOp->>PythonOp: python_callable(*op_args, **op_kwargs)
          PythonOp->>XCom: xcom_push(result)
          PythonOp-->>User: return result
          deactivate PythonOp

Josix Wang © 2024